
 Component / Object Technologies – An overview of COM

Object / Component Technologies – An overview of COM

Abstract :

COM, DCOM, COM+, Java Beans, CORBA and a host of many such confusing acronyms to learn? This was my reaction when I encountered them first in one of the articles published in Express Computers. But by the time I finished reading the article I was sure that they were one of the innovative new software technologies developed so far.

These all technologies fall under the class of Object and Component technologies with the promises of – REUSABILITY, LOCATION TRANSPERANCY and OBJECT ORIENTATION. And this is exactly what the software developers are today looking for. Though Object and Component technology is by no means an earth shattering technology, they are sure a step closer to developing the Silver Bullet.

The main aim of this paper is to get an overview of one of such technologies form Microsoft called the COM.

COM stands for Component Object Model. Besides promising reusability, location transparency and object orientation it also supports machine independence and language independence.
The paper first concerns itself with the evolution of COM, its importance in software development, its features, how it works and how is it implemented.

Secondly, we consider what is a 3-tire and an N-tire model. How COM supports these software architecture.

Next, a small ActiveX control is developed using Visual Basic. This ActiveX control is developed to emphasize COM’s reusability, location transparency, and language independence. It also demonstrates how ActiveX is ported on the Internet.

Finally, we consider some of the possible problems with COM. How it will be solved in COM’s next version COM+. What suggestions I have and my possible solutions.

Evolution of COM :

Evolution of COM all started with Visual Basic, one of the popular front ends available today.

Visual Basic Extension :
In 1991, Microsoft unveiled the VBX (Visual Basic Extension). The main idea behind VBX was to create small reusable software components, which could be embedded in their containers. VBXs were written in C and C++ and provided a wide variety of capabilities that otherwise could not have been possible in a Visual Basic application. This made VBXs very popular. With this popularity the demand for them grew and soon developers wanted them for 32-bit applications and even for non-Intel platforms – like DEC Alpha, Power PC etc.

But VBXs were severely restricted; they were built on a 16-bit architecture and were not designed as an open interface. This made VBXs almost impossible to port on 32-bit and non-Intel platforms.

Microsoft was looking for an Object Oriented architecture that was extensible and that supported a data-driven approach, as opposed to an application-driven approach. The result – OLE 1.0.

OLE 1.0 :

By the end of 1991 Microsoft announced a new specification called OLE 1.0. OLE stood for Object Linking and Embedding. OLE 1.0 was basically a method of handling compound files. OLE 1.0 was less popular because of its complexity.

OLE 2.0 :

In 1993 Microsoft introduced a new version of OLE – OLE 2.0. It supported an entire architecture of object-based services that could be extended, customized and enhanced. The foundation of this service architecture was Component Object Model (COM). OLE – 2.0 was a big success and it received two prestigious industry awards: A Technical Excellence award from PC Magazine and the MVP award for software innovation form PC / Computing.

The OLE 2.0 services incorporate many principles embodied in Object Oriented programming: encapsulation, polymorphism and an object-based architecture.

Microsoft also simplified programming with OLE when it encapsulated all the OLE APIs into MFC, which was, shipped with Visual C++ 2 kit.

Figure 1 shows the evolutionary map of COM.

Figure 1 : Evolution of COM

Component Object Model :

Microsoft designed OLE with Object Oriented programming in mind. COM objects are much like instances of C++ or Java classes or an ADA package. Since COM was designed with C++ programmers in mind, it supports encapsulation, polymorphism and reusability. However, COM was also designed to be compatible at the binary level and thus differs from a C++ object.

In short COM is just a binary standard, laid out by Microsoft which provides the features supported by all object and component technologies.

Each COM component (either a client or server) may implement one or more interfaces defined by Microsoft’s COM specification. But each and every component must implement the IUnknown interface defined by the COM subsystem. An interface is just a collection of function declarations, which must be implemented by the interface implementers. In C++ interfaces are declared using an abstract class which contains only pure virtual functions. A pure virtual function is a virtual function with an =0 initiliser. Thus a class declared as:

class AnAbstractClass

 {

virtual void pureVirtual() = 0;

 };

Becomes an abstract class. An abstract class can never be instantiated unless all pure virtual functions are implemented by deriving the abstract class.

All COM objects expose their functionality through interfaces. An interface in other words is a binding contract between the COM object and the world.

Each object in COM implements a vtable called a virtual function table. A vtable is nothing more than an array of pointers to member functions implemented in an object. This vtable is shared between all the instances of the object; also maintaining the private data of each object. A client application invokes an instance of the interface and gets a pointer to a pointer that points to the vtable. Each time a new interface to the object is instantiated, the reference count is incremented. Conversely, each time a reference is destroyed, the reference counter is decremented. When the reference counter falls down to zero, the object is destroyed.

Comming back to IUnknown which contains three very important pure virtual functions – QueryInterface(), AddRef(), Release(). Every COM component must implement all these three methods or functions.

QueryInterface() accepts two parameters. Out of these the first parameter is very important to COM subsystem. It is a unique 128-bit identifier and is called the GUID (Globally Unique IDentifier). GUIDs are unique for any COM component on this planet. Since duplicate GUIDs will create havoc in the COM subsystem, therefore Microsoft provides tools like GUIDGEN and UUIDGEN to automate GUIDs generation. The second parameter is a pointer to pointer of the COM object. The COM server uses the second parameter as an o/p parameter. Using this pointer the container uses the methods provided by the COM component.

AddRef() and Release() are used to keep track of the number of objects created in the COM subsystem, whose functionality was mentioned earlier. Every COM component used in a particular system is registered with the System Registry.

VBX

OLE 1.0

COM

ActiveX

OLE 2.0

DCOM

WWW

COM+

Evolution of COM

Every COM component exposes some public interfaces to the world.

Visual Basic is the root of COM technologies.

