Using RSS feeds in computational chemistry programs
by V.Ganesh, Research student, University of Pune

Abstract:
This article describes an aspect of using RSS feeds in computational
chemistry programs, by giving an exemplar with implementation in
GAMESS.

Introduction:

RSS or Really Simple Syndication has recently become popular and is
extensively used as news aggregator. RSS is basically a small well
formed XML file that contains minimal information (like headlines) and
links to additional information (detailed report). It has become so
ubiquitous that recent browsers like Firefox and mail clients like
Thunderbird have in-built RSS readers.

In an seemingly unconnected paradigm, computational chemistry today
has become more and more oriented towards “black-box"” approach or
getting some results out of canned software. Though this form of
compotenization of scientific software is good indication in the eye of a
computer scientist, it takes away lot of creativity form budding
computational chemists. Whether you like it or not, this segment of
software is more and more going to be like todays canned OSs like
Windows and OS X.

Most of the “real” computations performed by a computational chemist
take up lot of computational resources. At a given time one might be
interested in many systems and thus performing a couple of calculations
on different disconnected machines. In such a case it become difficult
and cumbersome to handle and keep track of the status of each
computation, not only because of the number, but also because of the
disconnected nature of the compute servers.

At this point a simple technology like RSS comes to our rescue. If the
program that is being used by the chemist can be suitably modified so
as to generate a small RSS file that can be put on an HTTP server, then
your job is done! You can get updates of the job sitting from any where
albeit an access to a machine having a descent browser with RSS feed
(like Firefox). I must caution you that it is not always possible to get the
source of the program that you use, this is especially true if you are
using some commercial packages. The need to do so also brings out,
why “black-box"” approach is not always good as also the importance of

1 of 9

open source.

Methodology:

I follow up a very simple approach of getting RSS feeds from GAMESS
program (used for ab initio electronic structure calculations). The basis
idea is outlined in the following diagram:

information

gamnotify.py >gamnotifyserver.py

Summarize XML file to HTML
and RSS feed file and send to
an HTTP server.

HTTP Server

+ rite L file with detailed

Provide a public search able page
so that browsers can connect and
subscribe to interested feeds. ¢

[¥] _Job update for.: Tochopherol - MP2! @ STO-3G - Mozilla Firefox.
File Edt View Go Toos Help

-t - & ()| Bookmark This Page.. CtisD b10 heml

 Geting Started B Lay{ 2208 Bockmatks..
ClGoogle Search RSs | Bookmarks Toolbar Folder
|) Quick Searches

For detailed information| —
For RSS feeds Click hey ! Firefox and Mozilla Links
| Morphon Technologies - Download the CSS Ed...

Last updated: Mon J\h‘ ob upd o ochopheraol P o Ll 0 -1261.612043 -2872.659735
Ll 1 -1261.642261 -2872.717249
Job update for : Tochopherol - MP2! @ STO-3G [1 2 1261664288 -2872.763703
Number of atoms : 81 Ll 3 -1261.679790 -2872.704858
Number of electrons : 240 - Gpenin o
Number of contractions : 205
Iter Energy (a.u.) Synthetic Energy (a.u.) Max Gradi Gradient Time (min)
0 |-1261.612043 |-2872.659735 0.079393 0.014044 4.66 (: .
1 -1261.642261 |-2872.717249 0.070245 0.011327 8.72 B rOW S er llent
2 -1261.664288 |-2872.763703 0.059039 10.008864 12.64
3 -1261.679790 |-2872.794858 0.046718 0.008726 16.54

The basic programing tools used for this purpose were Python, C and
FORTRAN. The GAMESS package is suitably modified to generate
appropriate XML file containing current status of the job executing on a
compute server. The XML file is then send to a predefined notification
server (gamnotifyserver.py) using a python script gamnotify.py. A
notification server, which too is written in python

20f9

(gamnotifyserver.py) then parses the XML and generates an HTML
and RSS feed file and places it in appropriate directory so that the web
server can read it. A special python script (search.py) is provided
which gets a list of all RSS feeds available on the server and presents it
to the browser. For example you can view a list of jobs currently running
on our hypothetical “phi-grid” by pointing your browser to the following

URL:
http://[phi-grid-server-name]/search.py?g=listjobs

This provides a very elegant and handy way of monitoring a job. What I
want to further exemplify is that the client is not restricted to a minimal
browser but it can well be a very rich desktop client as is in the case of
MeTA Studio, which even allows you to view the latest geometry as
shown in the following screen shot:

£ Applications Actions @85 H 5 @) Q MonMar2s, 0820

Eile View Tools Help

& ROF Notcation Opions |

- 6-310 FriJan 19 15.27:58 2005 (22 items) |=|
eometry |

412562003 -6993.055847
1412535127 -6992.920811
-1412559400 -6993.040993
-1412554185 6993015164
-1412570362 -6993.095250
-1412560860 -6993.048210
1412569813 -6993.092529
-1412571184 -6993.099320
1412570533 6993096097
@ 9 -1412571342 -6993100100
© 10 -1412570169 -6993.094291
@ 11 -1412571513 -6993100246
@ 12 -1412571513 -6993100845
@ 13 -1412571798 -6993.102357
© 14 -1412571720 -6993.101970
@ 15 -1412571933 -6993103029
© 16 -1412572011 -6993103413
@ 17 -1412572067 -6993.103691
© 18 -1412571945 -6993.103086
© 19 -1412572123 -6993103966
@ 20 -1412572142 -6993104062

- ‘El Mo Workspace Loadss] (& T stustoTasks | | 5
]

nand auery (0 Filesystem

The phi-grid job list

1 jb1040 XML RSSFeed

2 jbl0 XML RSS Feed

3 jb10-631gdp EML RSS Feed

4 thejob XML RSSFeed

S jblO-detail XML RSS Feed

6.110-30-detail XML ESS Feed

7.110-30 XML ESSFeed

8. thejob-detail XML RSS Feed

9. cer: detail XML RSSFeed
KML RSS Feed
11 stage3-detail XML RSS Feed
12. ceramideS-stage3 XML R5S Feed
13. newalpha631gd-detail XML ESS Feed
new: lgd XML RSSFeed

tail XML RSS Feed

Workspace Log_[| Runtime g |

Conclusion:

RSS is a powerful way of notification, not only for news sites but for any
process for which constant monitoring is required. I have exemplified it
for GAMESS but this can be easily used for any kind of computational

30f9

chemistry package. Further, this article should give you at least an
indication as to why we should not take every thing as a “black-box" ...
because you loose the power of innovation altogether.

Code listing:

In the end, I provide code listing of the python files I used, but I don
not guarantee correctness of any piece of code. In case you want to do
a similar setup, you may mail me at tovganesh@yahoo.co.in.

PS: I am not an computational chemist, but a computer science student,
so please avoid asking any chemistry questions to me ;)

Listing 1

#!/usr/bin/python

search.py

A specially written search script for giving a list
of GAMESS jobs running on the chemistry quantum grid!
Its a demo of how to write cgi based search tools for
compute grids which can be directly integrated into
the MeTA Studio (TM).

(c) V.Ganesh
@author V.Ganesh
29th Nov 2004

S o S S SE o e S e e o 3 o

import os
import cgi
import sys
import string

from time import *

list of supported options, at present only one!
LIST JOBS = "listjobs"

job list directory
JOB_LIST DIR = "/home/tcg/public_html/gamess/"

job URL base
JOB_URL BASE = "http://chem.unipune.ernet.in/~tcg/gamess/"

generate the job list
def generateJobList () :
fList = os.listdir (JOB LIST DIR)

jobList
newJob

[]

won

for fil in fList:
if (string.find(fil, "frag") < 0):
newJob = fil[O:string.rfind(£fil, ".")]

4 0f 9

#

if (jobList.count (newJob) == 0):
jobList.append (newJob)

return jobList

generat a valid request HTML

def generateHTML (option, jobList):

#
de

#
de

print 'content-type: text/html \n'

print '<html><head><title>The phi-grid</title></head><body>"
print '<h2><u>The phi-grid job list</u></h2>"'

print ''

for job in jobList:

print '<1li> '

print '<u>' + job + '</u> '

print 's XML'
print 's RSS Feed'

print '</1i>"'
print '"'

print '</body></html>"'

there was an error! do not revel much, must be a robot!
f generateErrorHTML () :

print 'content-type: text/html \n'

print '<html><head></head><body>"

print '<hl> Donot Do Things Which You Donot Know! </hl1>"'
print '</body></html>"

the main search entry point
f main () :
form = cgi.FieldStorage ()

if (not form.has key("g")):
generateErrorHTML ()

if (LIST JOBS == form["q"].value):
generateHTML (LIST JOBS, generateJobList())
else:
generateErrorHTML ()

the main entry!

main ()

Listing 2

#4#

gamnotify.py

#4#

GAMESS notification client, accept the name and send in the XML file
to the GAMESS notification server.
##

27th Nov 2004

##

Qauthor: V.Ganesh

##

import os
import sys
import string
import socket

50f9

from gamio import *
from gamconstants import *

#

send the XML file

def sendXML (xmlFileName) :
connect to the notification server
s = socket.socket (socket.AF INET, socket.SOCK STREAM)
S.connect((GAMESS_NOTIFY_SERVER, GAMESS_NOTIFY_SERVER_PORT))

open o/p stream connection
fos = s.makefile ("w")

send in the file name
fos.write (xmlFileName + "\n")
fos.flush ()

and then the contants
writeFile (xmlFileName, fos)

close the streams and connection
fos.close ()

s.close ()

the main function

if name == " main ":
if (not (len(sys.argv) == 2)):
print "The i/p XML file not given: " + sys.argv([l]

sys.exit (10)

sendXML (sys.argv[1l])

Listing 3

##

gamnotifyserver.py

##

GAMESS notification server
##

27th Nov 2004

##

@author: V.Ganesh

##

import os
import sys
import string
import socket

import xml.dom.minidom
from xml.dom.minidom import Node

from time import *

from gamio import *
from gamconstants import *

#

update the RSS file

def updateRSSAndHTML (xmlFileName) :
rssFileName = xmlFileName[0O : string.rfind(xmlFileName, ".")]

htmlFileName = xmlFileName[0 : string.rfind(xmlFileName, ".")] + ".html"

open and parse the GAMESS xml file
gamessDoc = xml.dom.minidom.parse (GAMESS NOTIFY OP DIR + xmlFileName)

now using this write a short update syndication file
gamessJob = gamessDoc.getElementsByTagName ("agamessjob") [0]

rssFile open (GAMESS NOTIFY OP DIR + rssFileName, "w")
htmlFile = open(GAMESS NOTIFY OP DIR + htmlFileName, "w")

rssFile.write ("<?xml version=\"1.0\" encoding=\"iso-8859-1\" ?2>")
rssFile.write ("<rss " + \
"xmlns:rdf=\"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#\" "
+\
"xmlns:dc=\"http://purl.org/dc/elements/1.1/\" " + \
"xmlns=\"http://purl.org/rss/1.0/\" version=\"2.0\"> ")

rssFile.write ("<channel>")
rssFile.write ("<title>" + gamessJob.getAttribute ("title") + "</title>")

htmlFile.write ("<html><head><title>Job update for : " +
gamessJob.getAttribute ("title") + "</title></head>")
rssFile.write ("<description>Job update for : " + gamessJob.getAttribute

("title") + "</description>")
rssFile.write ("<language>en-us</language>")
rssFile.write ("<pubDate>" + asctime () + "</pubDate>")
rssFile.write ("<lastBuildDate>" + asctime () + "</lastBuildDate>")
rssFile.write ("<docs>" + GAMESS NOTIFY URL ROOT + "</docs>")
rssFile.write ("<generator>GAMXML addons</generator>")
rssFile.write
("<managingEditor>sysadmin@chem.unipune.ernet.in</managingEditor>")
rssFile.write ("<webMaster>sysadmin@chem.unipune.ernet.in</webMaster>")

htmlFile.write ("<link rel=\"alternate\" title=\"" + \
"Job update for : " + gamessJob.getAttribute ("title") + \
"\" href=\"" + GAMESS NOTIFY URL ROOT + rssFileName + "\"
type=\"application/rss+xml\">")

htmlFile.write ("<body>")
htmlFile.write ("For detailed information look into the <a href=\"" + \
GAMESS NOTIFY URL ROOT + xmlFileName + \
"\" > XML file
")
htmlFile.write ("For RSS feeds <a href=\"" + \
GAMESS NOTIFY URL_ ROOT + rssFileName + \
"\" > Click here ")
htmlFile.write ("<h4>Last updated: " + asctime() +
"</h4>")
htmlFile.write ("<table border=\"0\">")
htmlFile.write ("<tr><td><u>Job update for :</u></td><td>" +
gamessJob.getAttribute ("title") + "</td></tr>")
htmlFile.write ("<tr><td><u>Number of atoms :</u></td><td>" +
gamessJob.getAttribute ("noOfAtoms") + "</td></tr>")
htmlFile.write ("<tr><td><u>Number of electrons :</u></td><td>" +
gamessJob.getAttribute ("noOfElectrons™) + "</td></tr>")
htmlFile.write ("<tr><td><u>Number of contractions :</u></td><td>" +
gamessJob.getAttribute ("noOfContractions") + "</td></tr>")
htmlFile.write ("</table>")
htmlFile.write ("<table border=\"1\">")
htmlFile.write ("<tr>")
htmlFile.write ("<td><u>Iter</u></td>")

70f9

htmlFile.write ("<td><u>Energy (a.u.)</u></td>")

htmlFile.write ("<td><u>Synthetic Energy (a.u.)</u></td>")

htmlFile.write ("<td><u>RMS Gradient</u></td>")
htmlFile.write ("<td><u>Time (min)</u></td>")
htmlFile.write ("</tr>")

for geom in gamessJob.getElementsByTagName ("geom") :

(
(
htmlFile.write ("<td><u>Max Gradient</u></td>")
(
(

energy = geom.getElementsByTagName ("energy") [0]
gradient = geom.getElementsByTagName ("gradient") [0]
tscf = geom.getElementsByTagName ("time") [0]

rssFile.write ("<item>")
rssFile.write ("<title>" + geom.getAttribute ("number")

energy.getAttribute ("value™) \
+ " " + energy.getAttribute ("syntheticEnergy") +

"</title>")
rssFile.write ("<link>" + GAMESS NOTIFY URL ROOT + htmlFileName +
"</link>")

rssFile.write ("<description>")

+ o4

rssFile.write ("Energy: " + energy.getAttribute ("value") +
energy.getAttribute ("units") + \
" , Synthetic Energy: " + energy.getAttribute
("syntheticEnergy") + energy.getAttribute ("units") + \
", Maximum gradient : " + gradient.getAttribute ("max") +
", RMS gradient : " + gradient.getAttribute ("rms") + \
", Time : " + tscf.getAttribute("scftime") +

tscf.getAttribute ("units"))

htmlFile.write
htmlFile.write
htmlFile.write
htmlFile.write

"<tr>")

+

n<td>"

(
(
(energy.getAttribute ("value")
(

"</td>")

#

htmlFile.write ("<td>" + gradient.getAttribute ("max")
htmlFile.write ("<td>" + gradient.getAttribute ("rms")
htmlFile.write ("<td>" + tscf.getAttribute("scftime")

htmlFile.write ("</tr>")

rssFile.write ("</description>")
rssFile.write ("<pubDate>" + asctime () + "</pubDate>")
rssFile.write ("</item>")

rssFile.write ("</channel>")
rssFile.write ("</rss>")

htmlFile.write ("</table></body></html>")
rssFile.close()

htmlFile.close ()

the server starts here
def startServer():

start the service
s = socket.socket (socket.AF INET, socket.SOCK STREAM)
s.bind((GAMESS_NOTIFY_SERVER, GAMESS_NOTIFY_SERVER_PORT))

start an endless loop of
while 1:

"<td>" + geom.getAttribute ("number") + "</td>")

"<td>" + energy.getAttribute ("syntheticEnergy")

+ "</td>")
+ "</td>")
+ "</td>")
+ "</td>")

+

80f 9

try:
listen till we get some client
s.listen (1)
conn, addr = s.accept|()

open i/p stream connection
fin = conn.makefile("r")

read the file name
xmlFileName = string.strip(fin.readline())

ensure UNIX style filenames

xmlFileName = string.replace (xmlFileName, "\\", "/")

xmlFileName = xmlFileName[string.rfind(xmlFileName, "/")+1 : len
(xmlFileName)]

print "The XML will be logged to " + =xmlFileName + " at " + asctime ()

write the file contents
readFile (GAMESS NOTIFY OP DIR + xmlFileName, fin, "w")

close the stream and connection
fin.close()
conn.close ()

update the RSS (Really Simple Syndication) file
updateRSSANdHTML (xml1FileName)

except Exception, err:
print asctime() + " : Unable to write XML : ", err. str ()

s.close ()

the main function
if name == " main ":
startServer ()

90f9

